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Abstract

Many plasma diagnostics contain complementary information. For example, the double-foil soft x-ray
system (SXR) and the Thomson Scattering diagnostic (TS) on the Madison Symmetric Torus both
measure electron temperature. The complementary information from these diagnostics can be combined
using a systematic method based on integrated data analysis techniques, leading to more accurate and
sensitive results. An integrated data analysis tool based on Bayesian probability theory was able to
estimate electron temperatures that are consistent with both the SXR and TS diagnostics and more
precise than either. A Markov Chain Monte Carlo analysis to increase the flexibility of the tool was
implemented and benchmarked against a grid search method.
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The extreme plasma environments in next step fusion devices such as ITER will limit diagnostic data.
Integrated data analysis (IDA) is a method for combining limited data from multiple diagnostics, along
with their uncertainties, to extract common parameter(s) of interest. This method has been implemented
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on a number of plasma fusion experiments to measure a variety of parameters (see Refs. 1–3 for some
examples). On the Madison Symmetric Torus (MST) reversed field pinch (RFP), the double-foil soft x-ray
(SXR) tomography and Thomson Scattering (TS) diagnostics both contain information about electron
temperature (Te). A traditional analysis approach is to analyze the data sets separately, extract the
temperature calculated by each one, and compare them; however, this neither addresses issues that
arise if and when the diagnostics disagree, nor does it leverage the wealth of information that they jointly
contain. Using IDA techniques to combine the data from separate diagnostics while extracting Te
overcomes both of those problems. The result is consistent with the data from all the diagnostics
included, and the precision is improved due to the fact that there are more independent measurements.
In this paper, we present the initial development of an IDA tool using Bayesian probability theory (BPT)
for MST, concentrating on Te using SXR and TS.

Bayesian probability theory is a useful framework with which to pursue IDA due to its modularity, reliance
only on forward models, and its ability to include background information into the calculation of a

parameter. The core of BPT is Bayes’ rule:4

(1) 
where P(x|Data, I), the posterior probability, is the conditional probability of getting a particular value for
the parameter of interest x, given the data and any background information I. P(Data|x, I), called the
likelihood function, is the probability of getting the data given a particular value for x and any background
information. P(x|I), the prior probability, represents any prior knowledge we have about the value of x.
Finally, P(Data|I), called the evidence, is a normalization constant that gives the absolute probability.
Making the assumption that the TS and SXR measurements are completely independent when
combining them, Bayes’ rule takes the form

(2) 

where  is a vector containing the desired fit parameters,  and  denote a set of experimental
data from SXR and TS, respectively, and I is the background information.  and 

 are the likelihood functions for the ith SXR chord and jth TS point, respectively, and P(ak|I)
describes the prior information we have about the desired fitting parameters.

The other primary tool in BPT, marginalization, can be used in the case where there are multiple
parameters. Marginalization is given by
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(3) 
where the integral is taken over all possible values for y. In this case, y is said to be “marginalized” to

give the probability of getting a particular value for parameter x, regardless of the exact value of y.4

 
The double-foil SXR tomography system on MST has 40 unique viewing chords arrange such that they
cover a 2-dimensional poloidal cross-section of the plasma. Each viewing chord is equipped with two
detectors, a 421 µm beryllium filter and a 857 µm beryllium filter. Further details on the diagnostic can be
found in Refs. 5,6. The analysis is based on the double-foil technique, which uses the ratio of

brightnesses from detectors that share a line of sight to find the temperature.7,8 We ascribe a gaussian
to the SXR likelihood function:

(4) 
where Rm, i and Rc, i are the measured and calculated ratios of ith SXR chord, respectively. The
uncertainty σSXR, i includes both the measured electronic noise and systematic uncertainties. We
calculate the systematic uncertainties include a relative uncertainty of about 2% of the measured
brightness that takes into account uncertainty in detector position and size, exact filter thickness, and

solid angle of the probe.9

The value for Rc, i is generated by an existing soft x-ray model that calculates theoretical x-ray
emissivity, expected brightness given the behavior of the filters and detector diodes, and, ultimately,

brightness ratio for each chord using a specified temperature.10 Specifically, the model takes as input a
radial profile for temperature, which, in the absence of any temperature structures, can be parameterized
as

(5) 
where Te0 is the core temperature and r/a is the normalized radius. The three parameters, Te0, α, and β
make up vector .

MST is also equipped with a 21-chord Thomson Scattering diagnostic covering from the core to the edge

of MST.11 The temperature analysis of the TS diagnostic already uses a BPT framework,12 however, to
be consistent with the SXR analysis, we find the best fit of Te measured by TS to a profile given by Eq. 
(5) where r/a takes the value of the locations of the TS measurement points. We approximate the TS
likelihood as gaussian, and use
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(6) 
for the TS likelihood function, where  contains the same parameters as for the SXR likelihood, and Tm,
j, Tc, j and σTS, j are the measured and calculated temperatures and uncertainty of the jth TS point,
respectively.

 
In general, all we know about each parameter is a range of possible values, but we have no reason to
choose one value over another within that range. Thus, the prior probability for each parameter is a
uniform distribution over the respective ranges and zero outside of it. Temperature must be positive, so
Te0 must be greater than zero and, in principle, can have any positive value. Since the hottest electron
temperatures typically measured in experiment are usually ∼1500 eV, we use an upper bound of 2000
eV so that our range is finite. In experiment, we generally see α values of between 7 and 12 and β
values between 4 and 19.

 
To characterize the integration technique, we first generate a set of synthetic ratio data (Rm, i) and
Te(r/a) for TS (Tm, j) with Te0 = 1350 eV, α = β = 8. Analysis is done using 3-dimensional (3D) grids of
pre-calculated theoretical ratios for Rc, i for SXR and Te profiles for TS (Tc, j), generated by
systematically varying Te0, α, and β over the range specified by the priors. Using Eqs. (4) and (6) and
uncertainties based on experimental measurements, we calculate the likelihoods for the synthetic SXR
data and TS data separately. The posterior probability is given by combining the two likelihood functions
and the priors. The result is a 3D array of probabilities describing the probability that each combination of
Te0, α, and β gave rise to both sets of data. The plots in Figs. 1(a)–1(c) show the distribution for each
parameter after marginalizing over the two other. Figure 1(d) shows the most likely profile given the data
and uncertainty. The best value for each parameter matches the specified values well, with most likely
values of Te0 = 1350 eV, α = 8, and β = 8.

FIG. 1.
Posterior probability distributions of Te0 (a), α (b), and β (c) after marginalizing over the other two
parameters. (d) The most likely profile after marginalizing over α and β. The error bars are the 1-σ
uncertainty in the marginalized temperature.
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While this work concentrates on axi-symmetric plasmas with no structure, MST has the capability to
sustain various temperature structures, and future development aims to include such structure. Including
structure, however, necessitates many more parameters making a grid search impractically time-

consuming, so we aim to use Markov chain Monte-Carlo (MCMC) methods for that analysis.13,14 A
MCMC analysis of the three parameter profile describe by Eq. (5) is implemented here so that it can be
compared to the grid search. Slice sampling for the MCMC is chosen to take advantage of its ability to
accurately estimate the whole distribution, even in the case of strong covariance or multimodal

distributions,15 as the measurement uncertainty is derived from the full distribution. Some care has been
spent varying the settings of the MCMC using the synthetic data to examine stability and accuracy.

Of particular importance for distribution stability is the width of the region around each parameter that the
MCMC searches to choose the next value in the Markov chain. The widths for each parameter have
been tuned such that a trace of all choices for a single parameter appears as close to random noise as
possible. The number of samples kept in the chain was set such that the addition of five times more
samples did not significantly change the distribution for any parameter. These criteria ensure stable and
accurate distributions, as seen by the agreement between the grid search and the MCMC analysis,
shown in Fig. 2.

FIG. 2.
Agreement between distributions for Te0 (a), α (b), and β (c) after marginalizing over the other two
parameters for the grid search (solid red curve) and the MCMC analysis (bars).

 

Also of importance are the choices for the prior probabilities. As noted, the MCMC analysis reproduces
the probability distribution well, however, a different choice of prior, even one as simple as changing the
range of a uniform prior, can give rise to a bias in the most likely value or different distribution widths. In
this case, for example, a larger range in α leads to a wider distribution for α as well as β, thus affecting
the estimated uncertainty for both those parameters.

 
Marginalized distributions using a grid search for Te measurements from a single time point of
experimental data for which no temperature structures are expected (i.e., Eq. (5) is a good model) are
shown in Figs. 3(a)–3(c), which contains likelihood functions for SXR (red, dashed) and TS (blue,
dashed-dotted) along with the resulting posterior distributions (green, solid). Note the maximum in the
posterior distribution occurs where the two likelihoods overlap. The most likely parameters are Te0 =
1425 eV, α = 8, and β = 15, and the most likely profile is shown in Fig. 3(d). This is the profile for Te that
is the most consistent with both sets of data after marginalizing over α and β. For this shot, the SXR
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system is clearly a weak constraint. This is because the temperature is largely constant over region
where the majority of the SXR chords measure. Note that while in the core SXR and TS have
uncertainties of about 100 eV and 150 eV, respectively, the integrated analysis value of Te in the core
has an uncertainty of about 30 eV. This dramatic increase in precision occurs because of the
combination of data from both SXR and TS.

FIG. 3.
Experimental results for the three parameters Te0 (a), α (b), and β (c) for a single shot. (a)–(c) The SXR
likelihood is the red dashed line, the TS likelihood is the blue dashed-dotted line, and the integrated
result is the solid green line. (d) The profile that is most consistent with both sets of data with the
estimated 1-σ uncertainty (solid green line), compared to the measured TS data (the black stars). This
profile has been marginalized over α and β.

 

 
A Bayesian probability theory based analysis of the double-foil SXR tomography temperature data has
been implemented, and the integration of the SXR and TS diagnostics on MST has been demonstrated,
yielding more precise measurements of electron temperature. The tomographic layout of the SXR
system means that the TS and SXR system overlap poloidally, making the inclusion of structure a
straightforward task, so we anticipate that this technique will be useful for analyzing temperature
structures such as islands. We are also using this technique to explore the feasibility of measuring the
effective ion charge in MST.
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